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Abstract :

The concept of reduction between problems is s t rengthened.
Certain standard problems are shown to be complete in the new
and stronger sense. Applications to the number of solutions of

par ticular prob lems are pr esented .

keywords: reductions , polynomial time , logspace , complete sets.
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1. Introduction

One of the most striking fea tures of a large number of the

known reductions of one problem to another [K] is that they often

preserve a great deal more than they have to. More precisely ,

suppose that A is many-to-one polynomial time red~tcible to B where

A and B~are , as usual, subsets of ~~* for some finite alphabet >: .

Then all that is requ ired in the u sual de f i n ition is that

A if and only if f(x) c 13 ,

where f(x) is some polynomial time computable function. Essen$ ially

(*) states that x has a solution exactly when f(x) has a solution.

It appears , however , that quite often x and f (x) are more closely
• related than this.

• This imprecise intuitive feeling that reductions often preserve

additional structure is the subject of this paper. Our principle

result is the introduction of a new kind of reduction and a proof

4 that some standard complete problems are also complete in our
• strong sense.

The notion that reduction preserves additional structure also

H appears in Simon [Si]. His main result is that a number of problems

are still equivalent when (*) is strengthened to:

ç x Ii~ s the same number of solutions as f(x).

lie calls these equivalent problems parsimonious. There is a cli ffi-

culty with these results , however; it is not clear what it means

for x to have k solutions when A is an arbitrary set . Clearly,

either x is in A or it is not. Simon avoids this difficulty by

working only with well known and specific problems. In these cases
• it is reasonable to assume that “x has k solu tions ” is a meaninqful

concept. We take an alternative approach. The main virtue of this

approach is that it allows us to work with arbitrary problems , and

thus we can prove the existence of complete sets.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  ——.~~~~~~~~-
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2. New Definition_of Reduction

The key idea of our new r educ t ion  is th a L  we w i l l  focus  our

attention on relations rather than on sets. Roughly, SUP ~~OSO t-hat

V x c ~* , X EJ\ II and only if )y R(x ,y).

The intuitive concept that “x is an instance of A with k suiut:ions ”

can be more precisely r~ ndered by “there are k y ’s such that R(x ,y)

is true.” There are , however , several interesting difficulties in

making this rough idea work correctly. In this direction t•he next

definition is the key.

Definition : A combina tion _ m achine  is a Turing machine with L.~~

read—only input tapes with end—markers , the first 2-way and the

second 1—way , a 2—way  r e a d — w r i t e  work tape  and a 1—way w r i t e — o n l y

ou tpu t  tape . A combina t ion  m a c h i n e  is loyspace ( p o l yn o m i a l  L i me)

if it always halts and runs  w i t h i n  worktape space l og a r i t h m i c
(within time polynomial ) in the length of the first i n p u t .

As rema.rked in [ ra i L] ,  a set A is in N I , the class of iiondcter—

ministic logspace sets (NP , the class of noncleterministic polynumial

time sets) if and only if there exist a polynomial p and a relat .i~on

R such that

x c A  4~ (]y) [JyJ < p(~ xj )’~ R (x,y)],

and R is computable by a logspace (polynomial time ) combination

machine.

Now let R and S he arbitrary binary relatio~is , and let r and

s be polynomials. Then we will define reducibility <LkP)

between (fl,r) and (S,s) as follows :

(R,r) < L ( < ~~)(S S) provided there exists an f and g such that

1. f is a function computable by a deterministic logspace (polynomi~~’

time ) transducer 2-way on its input;
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2. g is a function computable by a logspace (polynomial time)

combina tion machine ;

3. ~u’x ,yc~~~,

[R(x,Y)~~J YI < r( Jx j )J implies ~~(f(x) ,g(x ,y))~~Jg(x ,y) J < s( f(x) I

4. g is 1—1 in the sense that

[ R x~ Y 1 )~~R ( x ~ Y 2 )~~ l Y 1 I < r ( ~~x~~) A ~~y 2~ < r (~ x~ )Ag(x ,y
1
)

= g ( x ~ y 2)] implies y1

5. g is onto in the sense that Vx ,zc~ * ,

[S(f(x)~~z )A I z I < s (If(x) t~~~implies[~v I~ I < r ( j x I )~~~R(x ,y)

A g(x ,y) = zi.

This definition , while at iirst appearing to he quite

complex , is actually a natural extension of the usual one. In

order to see this , observe that the usual definition states that

A is logspace (polynomial time ) reducible to B for A and 13 w h i c h
are expressed by

A = ( x I  J y  l~ I < r( Ix I )A R (x ,y)) and

B = {x~ ~jy  ~~~ < s ( I x D A S ( x , y ) )  provided

~t. [)~ J y J < r ( l x l )A R ( x iy)
] 

<_
~

• 

• 

[3y I~ I < s (If(x)J )A S(f(x ),y)] ,

where f is some logspace (polynomial time) transduction . Our main

idea is to strengthen this condition by puttin g into 1—1 corres—

pondence specific witnesses to the two existential quantifiers.
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Note that according to our defi ’iitions , if (R ,r) < L (~Y)(S ,s)

via f and g, then for any x ,

jy < r ( j x  ) A R(x ,y) I

= fy ~y <s ( I f  ( x )  I )  A S (f (x) ,y) }

Proposition 1: is transitive.

Proof: We first consider We need on ly  show t h a t  if  (R ,r ) 1 (5~~
via f ,g and (S,s) (T,L) via f’ , g ’ then (R ,r) <I (T, t )  v i a

f” Ax[f ’ (f (x) ) ] and

g” Ax ,y[g ’ (f(x) ,g(x ,y) ) ] .

First , f” is a loqspace transduction; this follows by standard arq~:

ments [SM]. Next , we must show that g” is computable by a lo~ spac

combination machine. We compute g ” (x,y)=g ’ (f(x) ,q (x,y)) as follow

• Simulate g ’. The only difficulty is in obtaining the

appropriate b i t s  of the inputs  to g ’ as needed . The
first input is easy: in order to compute the ith bit

of f(x) we need only simulate E(x) f rom the beg inn ing
until it outputs the ith bit. This works since x is

2—way; a counter must be maintained for i. The second
input is more difficult. In order to compute the ith

bit of g(x ,y) we simply simulate g(x ,y) until it out-

puts the ith bit. The key is that q ’ asks for these

bits in the same order as produced in the computation

• of g(x ,y) ; thus , i n  the simulation of g(x ,y) it suffices

• to have y on a 1-way tape . No counter need be maintained

for i in this case .

• We next show

3~ [R ( x , y ) A I y I  ~ r( J x I~~~imPlies [T(f” (x),c~”(x ,Y))A Ig ”(x ,Y) I ~t ( l f ” ( ~ 4
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We have , of course , that

[R(x ,y )A ly I < r( Ix 1 )~~irnp1ies [s(f(x),g(x,y))AIg(x ,y) r < s(if(>:)!)]

and that

[S(z,w)A l w I < s ( I z j ) ~ imPlies [r(fI (z),g ’ (z,w))A~ y ’ (z ,w) < t (~~f ’  ( z )  J.

Thus

[R(x~Y)A I Y I r( jxj~~~~S(f(x) ,g(x ,y))A (g(x ,y) I < s ( I f ( x )  I ) ]
~~~(f’(f(x)),g ’(f(x),g(x ,y))) A

I g ’ (f (x) ,g (x , y ) )  < t ( 1’ 
~~ (:~

) )
as needed .

Next , we show

4.  [R (x ,y 1) A R ( x ,y 2 ) A 1 y 11 < r( j x I )~~jy 2
j < r(~ x~ ) A g ” (x ,y

1
) =

g” (xi~~2)] implies y1 
= y2.

Assume

R(x ,y1)A R(x ,y2)A J y 1 J < r ( J x J ) r ~ J y 2 J ( r(j x J )Aq ”(x ,y1
)=g ”(x ,12).

-f

~1.

Now it follows that

S(f(x),g (x,y.)) and l~~(x ~Y~~) I  < s ( I f ( x )  ) for i = 1 ,2.

Since g ’(f(x),q(x ,y1)) = q ’(f(x),g(x ,y2)), and g ’ is 1-1 , we can 
•

conclude that g(x ,y 1) q(x ,y2). Now since g is 1-1 we finally
conclude that y1 

= y~~’ 
as needed .

Fin a l l y ,  we must prove

_ _ _ _ __ _ _ _ _  ~~~~~•- - • - - - J
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s. [ T ( f ” ( x) ~~z ) A I z t  < t ( I f ” ( x ) I~~ imPlies[~Y I~~i
A g” (x,y) z~~

Assume tha t  T ( f ” ( x ) , z ) A I z I  < t( f” (x)I). Since y ’ is onto

there is a w such that wi ~~~. 
s (If (x ) I )  and S ( f ( x )  , w)  and g ’ (i(>:) ,w) ;

Again since g is onto there is an I~~I < r( (xj) such that R(x ,y)

and g(x ,y) = w. Thus

g”(x,y)=g ’(f(x),g(x ,y)) = g ’(f(x),w) = z , as needed .

Thus , < L is transitive . The corresponding proof for

is s imi lar  and simpler.

Definition: (S,s) is L—complete (P—complete) if S is a relation

computable by a loyspace (polynomial time) combination machine ,

s is a polynomial , and for all (R,r) , where R is computable by a

logspace (polynomial time ) combination machine and r is a polyno—

mial ,

(R,r) < L ( < P ) (S , s ) .  ‘

It is not difficult to show that if (S,s) is L—complete

(P-complete), then

ix ~y l y l  < s (I x I )~~S(x ,y)} is comp lete in N I  (NP) according

to the more usual definitions.

Let SAT(x ,y) be “x is a conjunctive normal form Boolean formula

and y is an assignment of true or false to the variables of x

making x true” .[K]. SAT is clearly computable by a polynomial l ime

combination machine. 1.et s(n) = n .

Proposition 2: (SAT ,s) is P—complete .

Proof: Let R be a relation computable by a polynomial time combin-

ation machine M and let r be a polynomial. We will construct a

H 
• 

nondeterministic Turing machine M’ from M and r as follows:

A - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ •~~~~~~~~~~~~~~~ •~~~~~~~~~~~~~~~ • • •~~~ • . - _ _ _ _ _
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M’ on input x simulates t4 on inputs  of the form (x ,y)

- - by guessing bits of y (including guessing when the end

of y has been reached) when M needs them. M’ also keeps

a counter and if M tries to read more than r(~ x~ ) bits

of y ,  then M ’ will reject the input x for this series of

guesses. If M rejects (x,y), then M’ will also reject

x on the corresponding computation path. If M accepts

-
) then M ’ will continue to guess bits of y, and it accepts

-

• 

when it guesses that the end has  been reached ; a g a i n  i f

it tries to exceed r( I x I ) total bits of y then it rejects.

We also require that every guess made by M’ be actually “written

down ” when made (at least temporarily) so that distinct values of

y satisfying R(x ,y) and ly l . < r (jx~ ) will cause M’ to follow dis-

tinct computation paths . Clearly there is a polynomial q such that

M’ on any input x and any computation path , halts in at most q ( J x ~ )
steps; by standard techniques , we can actually assume that any

computation of M ’ that accepts x halts in exactly q(~ x j) steps.

Now M’ is coded into (SAT ,s) as in Simon [s*]. In order to

show (R,r) ~ (SAT ,s) we obtain the required mapp ings as follows :

1. f(x) is the Boolean formula obtained by coding the computations

of N ’ on the input x;

2. g(x,y) is anything we like if I y I  > r( I x I ) ; otherwise , ~ct M ’

operate on input x and guess precisely the i npu t y when simu-

lating the machine M: then let g (x ,y) be the Uoolean a~;si gn-

ment to the variables of the formula f(x) which describns

this computation.

We may now assert that these functions have the required properties.
P

Properties 1. and 2. of the definition of < are clear. For 3.,

we must show that

[R(xiY )A JY I ~ r (Ix l ~~ im p 1 i e s [s fx i g x ~ y A Ig(x ,y)~ < s(If(x) IH

‘k 
- 

~~~~~•~~~~~ —- m_ __
~~ •• ~~~~~- --- -—~~~~~- — -~~~~ - —~~~~~ ---—~~~~~~ • -• - -~~~~ -—-~~~~~~~
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But this should be clear from th e cons t r u c t i o n  of 11’ , f (x) and g(x ,y )

To see 4., suppose that R(x ,y1), R(x ,y2), 1y 1 1 < r( I x I ), 1y 2 1
ari d g(x ,y 1) g(x ,y2) are all true . Since M ’ writes down all its H

• guesses , it must be the case that y1 
= y2.

Finally we will show 5. Suppose that S(f(x),z) and

I z~ ~ s (If(x )I ) are true . Since z encodes the guesses of M ’ , there

must be an input y (since M’ only guesses the second input) such

that R(x ,y) with I~~( < r ( I x I )  and by cons t ruct ion  q (x ,y) = z .  ‘rims
g is onto , and hence (SAT ,s) is P—complete.

-
• 

- 
We could , of course , ex tend Propos i t ion  2 to a collection of

other polynomial—computable relations. Rather t h an  pursuing such

results , we turn our attention to relations c o m p u tab l e  by loqspace

combination machines . Let GAP(x ,y) be “x encodes an acycl ic  d i re c -

ted graph (Savitch [Sa]) with the partial ordering induced by the

edge directions consistent w i t h  the to t a l  o rde rin e  induced by t h e
node numbering , and y encodes a directed path f rom s t a r t  to tinish. ’

Again let s(n) = n. Clearly, GAP is computable by a logspace

combination machine .

Proposition 3: (GAP ,s) is L—complete.

Proof: Since this is almost ident ica l  to the proof of Propo si t ion
2 we will only sketch it. Let R be a relation computable by a
logspace combination machine M , and let r be a polynomial. befine

M ’ as fol lows:

on input x simulates M on inputs of the form (x,y)

by guess ing  b i t s  of y when  M needs them . (Note since

M is 1-way on this input M ’ does not have to remember

all of y). M ’ then operates just as in Proposition 2.

~

• —_ --~~~~~~~~~~~~~~~~ —- -- -~~~~- --~~~~---—~~~~- -— p. - — -~~~~ ~~ _~~ •_ _  — 
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Since guesses need only be written down temporarily, there is no

• difficulty with the space bound . C1.early N ’ will be a nondetei-
• ministic logspace Turinq machine which we can assume halts for

any computation in exactly q( Ix I ) steps , for sonic polynomial q.

M ’ is encoded into GAP as in [Sa]. rI~I1en f and g are obtained

as follows:

(1) f(x) is the graph obtained by encoding of N ’ on x.

(2) g(x ,y) is anything we l ike if j y l > r ( j x j )  . Otherwise , j e t

M ’ on input x with guesses y yield the p a t h  g (x ,y )  t h r o u qh

the graph f(x).

Then (R,r) < L ( SAT ,s) via this f and g. A key agai n is that the

computation of M’ encodes the actual y it guesses so that e(< ,y)

will be 1—1.

We note that Proposition 3 is also extendible to a vciri ?ty of

other logspace computable relations.

3. Size of Solution Sets for Relations

We consider I-complete (P—complete) (R ,r) . We wish to give
a complexity classification for

( R , r ) k = {x I  ~ exactly k values of y, j y j < r( jx j )A R(x ,y)I

for various values of k. We will first examine specific problems

and then we will use the results of Section 2 to o b t a i n  qeneraliza—

• t ions.  In the fol lowin a , we l e t  <~~~~
, < l 

, and represent t h e
- m I

reducibilities used by Karp [K], jones and Laaser Lit,], Cook [ci
and Ladner arid Lynch [LaL], respectively. For convenience , ~e

let SAT1 (x,y) be “x is an arbitrary form Boolean formula and y is

an assignment of true or false to the variables of x making x true .”

Let s ( n )  = n as before. Then it is clear that (SAT1 , s) is

P-complete .

--
- ————~~~~—-~~~~~~~ •-—~~~ — — . •~~~~~~~~ -~~~~~~ • - - 1••_~ —
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Proposition 4: For any  fixed k ~ 1,

(a) (SAT1 ,s)k 
~~~~~

‘ 

(SA T 1 , s ) 1,  and

(b) (GAP ,S)k i~i 
(GAP , s) 1.

- - Proof: (a) We First show (SAT1 ,s) (SATI ,s)  . If  x i~ not a
• 1

Boolean formula , define f(x) = x. Otherwise , assume x is of the

form a(x 1,...,x ) .  Let f ( x )  be the formula obtained by se1e~~f ingn
new disjoint sets of variables ix . ,...,x. and ex p a n d i n q11 i n i 1
into the appropriate form the expression :

[a(x11i ...~ x1
)A a(x21,.. .I x2~ ) A  . . .  

~~ 
a ( x ~~i .. . . ,x~~

)

A (x11x12. . .X
1 < X

21
X
22

.. .X
2 < 

. ..  < X kj X k2 . ~ X~~ fl )]

• The last line of incquaiities is intended to indicat e lexicojraphic

ordering of the given strings. f is comput,ible in i’elynoinial time ,

and x has exactl y k solu tions i f f  1(x) has exactly 1 s o l u t i o n .

Next we show (SAT1,s) (SAT 1,s) . If k l  there is noth ing
l~~ k

to prove-, so as sume k > 2 .  If  x i s  not a Boolean formula , define

• f (x)=~~. Otherwise , assume x is of the form a(x1, ...,x ). Let 1(x)

be tho formula

[a(xlt ...~
x )  A 

/\ 
~~~~]

k-l [/n~ i \ /n~ k-i
v .V x J  

~ 
(j \  x .

i=l L J 1 / \J fl+i4l /J
f essentially adds k—i dummy solutions ~n x , and so x has exactly

1 solution iff f(x) has e x a c t l y  k solutions.

(b) We first show (GAP ,S)fr 
H (GAP ,s)1. 1e~sume k > 2. if x is
,fl
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not an acyclic directed graph satisfying the given consistency
condition , then let f(x)=x. Otherwise , let~~ : NkX (0 ,1}k_l

be a natural 1-1 2k—l-tupling function with the property that

[~~~~ 

(x. < A 
V 

(x. < Y i)] 
implies

• p ( x l~~
. . . ,xk~~

a l ? . . . , a k l
) <P (Y lf .. .

~~Yk1
b l~~

...,bk l ).

The start node of f(x) is in ,.. .,n ,O ,...,O),

where n~ is the start node of x. The goal node of f i x )  is
(ii ,...,n , l ,...,l), where n is the goal node of x. The edgesG

• of graph f(x) will be defined by tupling together edqes of x as
follows: -

(p (x 1,.. .l xk,al
,.. ,a~~ i

) , p (y1,.. ,yk,bl,. .. ,b~ _ 1 ))

wil l  be an edge of f ( x )  exact ly  i f :  - 

-

• (1) (xl~~
...

~
xk~

al~~
. . . ,ak l ) 

~ 
(nG~ 

.,nG ,l , . . . ,l), and

(2) for all i , 1 < i < k-i ,

(a) either (x~~,y1) is an edge of x , or x1=y~~
n
~
, and

(b) one of (hi) — (b3) holds:

(bl) a1=O and 
~~~~~~~~ ~G 

and b
~
=O and 

~i
=
~ j+l

-
~ 
nG

(b2) a =0 and x. =x.~~1~ °G and b. =l and y. <

(b3) a
~
=l and b1=l .
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• The reader may verif y that fix) is an acyclic directed

graph s a t i s f y i n g  the  tj iven cons i s tency  c o n d i t i o n , and t h a t  f ( x )

is computable from x in logspace . intuitively, a single path

• th rough f ( x )  corresponds to para l le l  s imula t ion  of k d i s t in ct
paths through x , where a flag is changed from 0 to 1 to indicate

. that two “adjacent ” paths have just been discovered to diverge

(with the path at the lef t preceding the pa t h  at the ri ght i n x i —

cographically. Padding is used for shorter paths in x. W i t h

this intuition , the reader should be able to veri~ y that x his

exactly k solutions iff f(x) has exactly 1 solution .

Finally, we m u s t  show (GAP ,s)1 
~~ (GAP I s)} . But  t h i s  is

- • straightforward by a construction which adds k—i disjoint “dumnr ;

paths” to a graph of the appropriate type .

We now note that a result similar to Proposition 4. must

hold for all complete (R,r) . That is , addition of dummy s o lu t i o n s

and coll aps in g of seve r al sol u t ions  to one are constructions wh i ch

work for all complete problems. In fact , a l l  such problems ~i u s t

be equivalent to each other:

Proposition 5: For any fixed k 1,

(a) if (R,r) is P-complete , then (R ,r)k (SA’f l ,s)1 and

(b) if (R ,r) is I-complete , then (Rf r)k (GAP ,s)1.

r Proof: By Proposition 4. and the fact that our reducibilities

and pre serve card i n a l i t y  of s o l u t i o n  sets ( a s  noted immed i a t ely
prior to Proposi don 1)

Now tha t  we know t h a t  all size problems lie in a common

comple x i t y cla ss , we would l i k e  to he able  to say more about the

• location of this class. The only such information we have se far

arises as a result of the following Proposition. Here , let 5=
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(xl 3y f y f < s( jx f ) A SAT1 (x , y ) }  and let

G= {x I 3y I~ I ~~~. 
s( Ix I ) A GAP (x , y ) }  , i.e. nonde t e rmin i s t i c

problems of the usual  sort .

Proposition 6:

• ( a ) I f  ~ A ~~~~ S , then
m T

A c NP 1ff NP is closed under complement , and

A c P iff P=N P , and

(b) if G < I A < I G , then
rn T

A c N L 1ff Al L is closed under complement , and

A c L i f f  L = N L .

Proof: The arguments are all standard Turing machine construct ions ,

of the type found in [JL] or [LaL], for example.

Fina l ly , we can conclude :

Proposition 7: For any fixed k > 1,

( a )  if (R,r) is P—complete , then

(R,r)k c NP iff NP is closed under complement , and

(R,r)k ~ P iff P N P , and
I
; .

(b) if (R,r) is I—complete , then

(R ,r )
k 

c ML i f f  ML is closed under complement , and

(R ,r )
k ~ L i f f  L=M L. 

--- ~~~-- •- -•- - - , •—  

~~~~~

••-

~~~~~

--- ‘.-—-• —•

~~~~~~~~~~~~
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Proof:

(a) Because of Propositions 5. and 6 . ,  i t s u f f i c e s  to show
S < (SAT1,s) < S. To see the first reduction , we use a special

case of a construction for Proposition 4(a): if x is not a Boolean

formula , define f(x) = x. Otherwise , i f x is of the form a (x 1,. . . ,x

let f(x) be the formula [a(x1~~...~~x ) A  X +i]V[Xi
t
~ 
.. . A x t % x

+l]

x has no solutions 1ff  f ( x )  has exac t ly  one so lu t ion .

To see the second reduction , note tha t  (SAT 1 ,s)
1 

An R , where

A = ( x f  ~Iat least k values of y, j y j < s( fx j )A SAT1 (x ,y ) )

B = {xj ~~at least k+l values of y, j y f < s( fx j )A SATl (x,y)~

Clear ly A ,B are both in NP , so that A S and 13 S. Then a

Turing machine with an S—oracle may easily be constructed to decide

membership in (SAT1 ,s)1.

(b )  I t  s u f f i c e s  to show G < L (GAP ,F) 1 
< L 

G.
• , • 1-

The first reduction follows by adding a single “d ummy path” to a

graph. The second follows from the same argument as in (a)~

Of course , the given complexity classification is still very

incomplete ; further work remains to be done.

We would expect that there are other interestinu properties of

solut ion sets which  are preserved by strong roducibilities such as
ours .  F inding  the appropria te  rLronqth reducihilities needed to

preserve constructions such as those used for approximation , or for

f i n d i n g  a particular solution when existence is known , seems to be -
•

an interesting area for further study.

Li ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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